

Automotive Cryogenic Capable Pressure Vessels for Compact, High Dormancy (L)H₂ Storage

Salvador Aceves, Gene Berry,
Francisco Espinosa, Tim Ross,
Vernon Switzer, Andrew Weisberg,
Elias Ledesma-Orozco
Lawrence Livermore National Laboratory
June 10, 2008

This presentation does not contain any proprietary or confidential information

Project ID # TV9

Overview

Timeline

- Start date: October 2004
- End date: September 2011
- Percent complete: 60%

Budget

- Total project funding
 - DOE: \$2500 k
- Funding received in FY08:
 - \$800 k
- Funding for FY07:
 - \$750 k

Barriers

- A. Volume and weight
- O. Hydrogen boil-off

Targets

- 2010 DOE volume target
- 2010 DOE weight target

Partners

- Finalizing **CRADA** with major automobile manufacturer
- Negotiating CRADA with major pressure vessel manufacturer

Objective: Demonstrate the practical advantages of cryogenic capable pressure vessels

High energy density

http://www.bam.de

No evaporative losses

Milestones: We have made considerable progress toward demonstrating the practicality of cryogenic pressure vessels

- Install pressure vessel in experimental Prius vehicle (November 2006)
- Demonstrate long vehicle range:
 Drove 650 miles on a single H₂ tank (January 2007)
- Resolved technical risk of dormancy & high pressure: Demonstrated potential for 3 weeks dormancy.

 Test cut short at 6 days due to valve (January 2008)
- Demonstrating vacuum stability:
 Stable vacuum measured at 10⁻⁵ torr
 or below as vessel warms from 30 K
 to ambient over ~ 1 month.
 Currently at 200 K (April 2008)

Approach: Study crucial aspects of cryogenic pressure vessels as onboard storage systems

dormancy

vacuum stability

cycle test

Accomplishments: We integrated our cryogenic pressure vessel onboard an experimental hydrogen vehicle & demonstrated record unrefueled driving range (650 miles)

LLNL Cryotank

- Within 10% of DOE 2007 volume using LH₂ and including all system components
- Meets DOE 2007 weight goal
- stores 10.7 kg LH₂ (151 L capacity)
- stores 3.5 kg H₂ at 300 K, 5000 psi

The vehicle

- Toyota Prius converted to H₂ fuel by Quantum Technologies.
- Originally equipped with 5000 psi
 68 L pressure vessels (1.6 kg H₂)
- Increased capacity to a single 151 liter vessel (3.5-10.7 kg)

We demonstrated longest LH_2 dormancy onboard a vehicle (6 days) and potential for 3 weeks at ~3.5 Watts heat transfer rate

We demonstrated longest LH₂ dormancy onboard a vehicle (6 days) and potential for 3 weeks at ~3.5 Watts heat transfer rate

Vacuum stability is a key issue for cryogenic vessels. We are measuring outgassing from the surface of vessels with multiple surface treatments

We are conducting outgassing experiments inside an oven installed within a high pressure cell

System was fully built, tested and baked. Three sets of experiments have been run.

At the request of our industrial partner, we have monitored vacuum quality over a month as our vessel warmed up from cryogenic to ambient temperature

Our experimental results to date indicate good vacuum stability as the vessel warms up from 30 K to 200 K

Our cryogenic capable pressure vessels are projected to be less expensive than compressed hydrogen vessels

Source: TIAX

Future plans: In collaboration with our industrial partners, design and manufacture a new cryogenic pressure vessel for full cycle testing

Future plans: we will build and demonstrate a cryogenic capable onboard storage system meeting 2010 weight & volume targets

Summary: We will demonstrate the most compact and we believe ultimately practical hydrogen storage technology

- The high capacity of liquid hydrogen vessels without the evaporative losses: ~10X longer thermal endurance than low pressure LH₂ tanks essentially eliminates boil-off.
- Less expensive than compressed hydrogen vessels: LH₂ capable vessels use 2-3x less carbon fiber than conventional compressed H₂ vessels.
- Refueling flexibility yields
 infrastructure and driver advantages:
 Meets real time driver priorities
 (range, cost, ease, energy) and
 increases fuel availability